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Simulated annealing in the microcanonical ensemble

John R. Ray and Richard W. Harris
Department of Physics and Astronomy, Kinard Laboratory of Physics, Clemson University, Clemson, South Carolina 29634-1

~Received 13 January 1997!

In earlier work we have extended the microcanonical Monte Carlo method, which had been introduced for
systems described by continuous potentials@Phys. Rev. A44, 4061~1991!# to discrete lattice systems@Phys.
Rev. E 53, 3402 ~1996!#, such as the Ising model. This microcanonical ensemble Monte Carlo method is
rigorously based on statistical mechanics and one has available the entire structure of equilibrium statistical
mechanics, such as the full set of fluctuation formulas, which are useful in numerical estimates of the equilib-
rium properties of the system. In the present paper we explore the use of the microcanonical ensemble Monte
Carlo probability distribution to study combinatorial optimization problems using simulated annealing. In
particular, we present the results of a detailed study of a particular 20-city traveling salesman problem in both
the canonical and microcanonical ensembles.@S1063-651X~97!09105-8#

PACS number~s!: 05.20.2y, 05.70.2a, 02.50.2r
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I. INTRODUCTION

Since the introduction of the canonical-ensemble Mo
Carlo method into statistical mechanics by Metropoliset al.
@1#, most Monte Carlo simulations have used the canon
ensemble. Earlier we have introduced a rigorous micro
nonical Monte Carlo procedure@2# and applied it to con-
densed matter systems with a continuous potential. More
cently, we have shown that this same microcanon
ensemble~probability distribution in configuration space!
can also be used to describe discrete lattice systems@3#. In
related work, we have also developed other constant en
ensembles and carried out Monte Carlo simulations in th
ensembles; these include the isoenthalpic-isotension
semble@4# and new ensembles that describe open syst
@5#. Since the microcanonical ensemble describes an isol
system in equilibrium, this ensemble is at least as fundam
tal as the canonical ensemble but has, we believe, bee
appropriately neglected in simulation work. The canoni
ensemble is more popular in analytic work, where the ex
nential probability function is often simpler to use; in sim
lations, there is no difference in difficulty between using t
canonical or microcanonical ensemble.

The use of statistical-mechanics methods to study com
natorial optimization problems originated with Kirkpatric
Gelatt, and Vecchi@6#, where they described a method
minimizing a function of many variables, the so-called co
function, using the metropolis Monte Carlo method in t
canonical ensemble. They interpreted the cost function as
potential energy of a fictitious system and carried out m
tropolis Monte Carlo calculations in the canonical ensem
to generate a sequence of configurations of the system
with any physical system at a given temperature describe
the canonical ensemble, the fictitious system will come
equilibrium, where its Helmholtz free energy is minimize
As the temperature of the system is lowered and the sys
attains equilibrium at the lower temperature, the Helmho
free energy has a lower value, and in the limit as the te
perature goes toward zero, the system ends up, one hop
one of a group of states near the ground state of the sys
where the potential energy is approximately equal to
Helmholtz free energy and is near its global minimum. T
551063-651X/97/55~5!/5270~5!/$10.00
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procedure was termed ‘‘simulated annealing’’ by Kir
patrick, Gelatt, and Vecchi and is referred to by this name
the vast combinatorial optimization literature@7#. This
method and numerous variations are routinely used in b
Monte Carlo and molecular-dynamics simulations to stu
the low-temperature~-energy! configurations of condense
matter systems.

In the present paper, we present detailed Monte Ca
calculational results in both the canonical and microcano
cal ensembles for a 20-city traveling salesman probl
~TSP!. The basic theory associated with the microcanoni
ensemble is presented in detail in Refs.@2# and @3# and will
not be repeated. In Sec. II we outline the canonical and
crocanonical simulation methods. In Sec. III we present
results of canonical and microcanonical ensemble calc
tions for the 20-city TSP. In Sec. IV we present our conc
sions, along with suggestions for further work.

II. TRAVELING SALESMAN PROBLEM
AND ENSEMBLES

In the two-dimensional TSP, we are given a set ofN cities
at positions (xi ,yi) and we are asked to determine the min
mal path length that starts and ends at any city and pa
through each of the other cities exactly one time; such a p
is called a tour and is a polygon withN vertices. In the
example discussed in this paper, the positions of the ci
are chosen randomly inside the unit square. If we label
cities with integersi51,2,...,N, then each path length ca
be calculated if we give the ordered sequence of cities a
ciated with going around the path, starting from any ci
each such tour is associated with a permutation of the i
gers 1,2,...,N. For N>3 cities, there are, in genera
(N21)!/2 distinct sequences and, therefore, path leng
Since the number of distinct paths grows faster than
power of N, the problem has no known direct solutio
method that works for arbitraryN. Even for our small 20-
city problem, there are around 631016 distinct paths lengths
Simulated annealing is one of the methods used as a prac
method to obtain approximate solutions to such proble
Numerous other methods used to study the TSP, which
not be discussed in this paper, may be found in the exten
5270 © 1997 The American Physical Society
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review paper on the TSP@8#, along with the extensive set o
references in this paper. The cost functionU(x), which is
identified with the potential energy of the fictitious system
just the path length for the given sequence of cities visit
We shall use units so that the energies and temperature
all measured in the same dimensionless units. In the can
cal ensemble, we have the configurational probability dis
butionPT(x),

PT~x!5Ce2U~x!/T, ~2.1!

whereC is a normalization constant,x represents a specifi
sequence of the cities visited and completely specifies
system configuration, andT is the temperature. The averag
value ofU(x), along with the temperatureT, can be used to
define the total energy of the system as

E5NT1^U~x!&. ~2.2!

We are assuming two-dimensional Euclidean space;
changes for arbitrary dimensiond are simple and given in
Ref. @3#. By the bracketŝ &, we mean an equilibrium averag
over the configurations generated by the metropolis Mo
Carlo calculation, using the probability distribution equati
~2.1!. Other quantities for the fictitious system can also
calculated from the configurations generated in the Mo
Carlo calculation. The specific heat of the fictitious syst
cT5(1/N)(]^U&/]T) can be obtained from the fluctuation
in U, as given in Eq.~6! of Ref. @3#.

In the microcanonical ensemble, we have the configu
tional probability distributionPE(x),

PE~x!5C8„E2U~x!…N21Q„E2U~x!…, ~2.3!

whereQ(x) is the unit step function, which is 1 forx.0 and
zero otherwise, andC8 is another normalization constant; th
Q function arises because the kinetic energy of the sys
K5E2U is positive. It may seem unusual to think of th
TSP as having a kinetic energy, but as explained in Ref.@3#,
for lattice systems such as the TSP or the Ising model,
take the limit as the mass of the points of the discrete sys
goes to infinity and the velocity goes to zero, such that
kinetic energy is finite. The necessary limit ism→`,
ẋ→0, such thatAmẋ→finite, and the system has finite k
netic energy, but will not have any spatial motion. Oth
microcanonical ensemble averages can be calculated fo
fictitious system using the configurations generated from
Monte Carlo calculation using Eq.~2.3!. The microcanonical
ensemble specific heat,cE5(1/N)(]^U&/]T), can be calcu-
lated by using the fluctuation formulas given in Ref.@3#.
Calculating the average of the cost functionU(x) in the mi-
crocanonical ensemble and using the specified value oE,
we can use Eq.~2.2! to find the temperatureT of the ficti-
tious system corresponding to this energy. Thus, the in
mation from the two ensembles is complementary; in
canonical ensemble we specify a temperature and calcul
corresponding average value of the energy, whereas in
microcanonical ensemble we specify a value of the ene
and calculate a corresponding average value of the temp
ture. By feeding the calculated energy or temperature va
back into the complementary ensemble, we obtain a con
tency ~and code! check on our calculational results.
.
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III. RESULTS

A. Computational strategy

In order to omit repeated statements in the discussion
the data generated in our calculations, we shall refer to
temperature, energy, and potential energy of the fictitio
system without pointing out every time that these quantit
do not have a meaning in terms of a real system; we
applying statistical mechanics ideas to a fictitious physi
system.

We constructed a 20-city TSP problem by random
choosing 20x,y pairs in the unit square. In Fig. 1 we sho
this city arrangement, as well as the minimum path length
this arrangement. In order to carry out the Monte Carlo p
cedure, we need a method of making configurational chan
~moves! in the TSP, that is, trial configuration changes in t
metropolis Monte Carlo procedure. We carry out two typ
of trial moves with equal weighting:~1! given the present
sequence of cities to be visitedx, we select a subsequence
random length and reverse the order of this subseque
thus producing a new configuration of the systemx8; ~2!
given the sequence of cities to be visitedx, we select a
subsequence of random length and transport this su
quence and insert it between two cities not on the sub
quence. These changes are the same as those sugges
Presset al. @9#. In the former, ‘‘reversal change,’’ two city-
city distances are replaced by two other city-city distance
the calculation of the path length; these are the end point
the reversed subsequence. In the latter, ‘‘transport chang
three city-city distances are replaced by three other city-
distances; these three city-city distances are associated
the ends of the segment before its transport and the pos
to where it is transported.

We then carried out canonical ensemble Monte Ca
simulations at each of eleven chosenT values. Since we are
using a fictitious physical system, an arbitrary but satisf
tory method of defining a high~dimensionless! temperature

FIG. 1. The randomly selected 20-city problem discussed in
paper. The minimum length path is shown.
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FIG. 2. ~a! Total energy versus temperature for the two ensembles for the 11 values selected. In the canonical ensemble the e
derived quantity, while in the microcanonical ensemble the temperature is a derived quantity. The solid line with boxes are the
nonical ensemble values, while the dashed line and crosses are the canonical ensemble values.~b! The specific heat versus temperature f
the two ensembles. The solid line with boxes are the microcanonical ensemble values, while the dashed line and crosses are th
ensemble values.~c! The acceptance ratio versus temperature for the two ensembles. The solid line with boxes is the microc
ensemble values, while the dashed line and crosses are the canonical ensemble values.~d! The average path length versus temperature
the two ensembles. The solid line with boxes are the microcanonical ensemble values, while the dashed line and crosses are th
ensemble values. The lines are just to guide the eye. The values used to make these graphs are shown in Tables I and II.
o
m
s
rr

s
ys
th
d-
e
lin
an
-
th
f
e

nic

n
o
, o
ic
d
e
rl

a
e
fi

l-
for
the
ach
h of
lue

i-

ture
em’s
of
ble

are
ca-
ith
n as
nt in
as

ot in
-
t is
is
is to call the temperature high when approximately 90%
the moves are accepted; for our 20-city problem, this te
perature is aroundT52.00. After the high temperature wa
determined, we selected ten lower temperatures and ca
out five Monte Carlo calculations of 108 configuration
change trial moves at each of the eleven temperature
determine the thermodynamic properties of the fictitious s
tem. Note that in the present study we do not investigate
annealing schedule~temperature- or energy-lowering sche
ule!. Our approach is to study the fictitious system as a th
modynamic system in the two ensembles. Our annea
schedule is to lower the temperature to the next value
carry out five runs of 108 moves, and then lower the tem
perature or energy to the next value and so on until all
temperatures or energies are considered. The values o
average energies obtained in these eleven canonical
semble temperatures are then used in the microcano
probability distribution equation~2.3! to carry out eleven mi-
crocanonical ensemble runs at each of these energies. I
microcanonical ensemble calculations we again carry
five 108-move Monte Carlo runs at each energy. There is
course, no significance to the fact that we carry out canon
ensemble runs to first determine the energies to be use
microcanonical ensemble calculations; we could just as w
reverse this procedure. As mentioned, in our Monte Ca
calculations we carried out five 108 Monte Carlo moves, and
then lowered the temperature or energy to the next value
carry out another five 108 moves and so on, through all of th
temperatures and energies studied. We consider the
f
-

ied

to
-
e

r-
g
d

e
the
n-
al

the
ut
f
al
in
ll
o

nd

rst

108 configuration run as the equilibration portion of the ca
culation and do not use the values calculated in this run
the final error estimate. We use the calculated values in
other four runs to calculate a standard deviation for e
quantity of interest to use as an error estimate. For eac
the 11 canonical ensemble calculations, we arrive at a va
of the energŷ E& using Eq.~2.2!. For example, for the high
temperature T52.00 mentioned above, we find̂E&
550.398; this value of̂E& is then used in the microcanon
cal ensemble to calculate the temperature~which turns out to
beT51.9988! and the other quantities of interest.

B. Computational results

In Fig. 2 we present various quantities versus tempera
as calculated in the two ensembles. Because of the syst
small size we would expect small differences in the value
the various quantities. Ensemble theory shows that ensem
differences may be of the order of (1/N) for intensive vari-
ables. All of the values comparing the two ensembles
smaller than this value, often much smaller. The micro
nonical ensemble results are shown as solid lines w
squares while the canonical ensemble results are show
dashed lines with crosses. Note the very close agreeme
Fig. 2~a! between the energy-versus-temperature relation
calculated in the two ensembles. The specific heats are n
as close agreement in Fig. 2~b!. For example, at the tempera
ture 0.075, the microcanonical ensemble specific hea
0.7385~0.002!, while the canonical ensemble specific heat
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0.7214 ~0.001!, where we show the standard deviation
parentheses after the specific heat values. Note that the m
mum in the specific heat is associated with an inflect
point in the energy-versus-temperature relation. This is s
gestive of a higher-order phase transformation in the syst
We shall return later to a discussion of this suggested ph
transformation. In Fig. 2~c! we show the acceptance rati
defined as the ratio of the number of accepted moves to
total number of moves, for calculations in the two e
sembles. Finally, in Fig. 2~d! we show the average pat
length as calculated in the two ensembles. The fact that
relation is very nearly the same for the two ensembles s
gests that either ensemble can be used in simulated anne
algorithms to find the lowest value of the cost function f
the system.

C. Numerical values and errors

In Table I we give the canonical ensemble values ofT,
^E&, ^U&, andc at the temperatures studied, while in Tab
II we give the microcanonical ensemble values at the en
gies studied. These are the values used to construct
2~a!–2~d!. The error estimates, except at the lowest tempe
ture, are small. For example, in the canonical ensemble
at T50.075, the errors in the average energy, average p
and specific heat are 0.0013%, 0.0017%, and 0.16%, res
tively. We expect a larger error in the specific heat, since
related to the derivative of the energy. It is well known th
in Monte Carlo and molecular-dynamics simulations su
derivative quantities converge more slowly and have lar
uncertainties. The errors in the microcanonical ensemble
similar to the canonical ensemble errors. For example, a
energy ofE56.1005, which corresponds to a temperature
0.07525, the errors in the average energy, average
length, and specific heat are 0.003%, 0.0009%, and 0.2
respectively.

D. Probability distribution of path lengths
in the two ensembles

During each simulation we constructed a histogram
path lengths. This histogram is the probability distributi

TABLE I. Canonical ensemble Monte Carlo values for the te
perature, average total energy, average path length, and the sp
heat. All the quantities are dimensionless. The average values
determined by carrying out five calculations of 108 moves and av-
eraging the last four numbers obtained for each quantity. The t
perature is an input value and has no uncertainty in the calcula

T ^E& ^U& c

0.0125 4.3258 4.0758 0.08318
0.025 4.6114 4.1139 0.21622
0.05 5.2901 4.2901 0.49409
0.075 6.1012 4.6012 0.72135
0.10 6.9860 4.9860 0.80244
0.25 12.224 7.2249 0.57876
0.50 18.9462 8.9462 0.19305
0.75 24.5972 9.5972 0.08709
1.00 29.9214 9.9214 0.04842
1.50 40.2410 10.2410 0.02102
2.00 50.3979 10.3979 0.01163
xi-
n
g-
m.
se

he
-

is
g-
ling

r-
gs.
a-
ns
th,
ec-
s
t
h
r
re
n
f
th
%,

f

for U(x) at the given temperature or energy for this c
arrangement. In Figs. 3~a!–3~d! we show these probability
distributions at temperatures 1.50, 0.25, 0.100, and 0.01
respectively, for the two ensembles. Note the differences
scales on the four figures. These histograms are calcul
during the last of the five 108-move calculations. Thus, th
area under each of these curves is 108; to obtain the prob-
ability distribution, we would divide by this normalizatio
factor. At the highest temperature/energy, 1.50, the t
probability distributions are similar, and it is difficult to te
the difference between them in Fig. 3~a!, while in Fig. 3~b!
for the temperature 0.25, the two distributions have beco
quite different, with the microcanonical ensemble distrib
tion being sharper, while the canonical ensemble distribut
is broader and shows noticeably more asymmetry abou
maximum value. This tendency is even more pronounced
Fig. 3~c! for the temperature 0.100. Note that this value
near the maximum in the specific heat and, hence, near
suggested phase transformation. Note the irregular feat
in the probability distribution at small distances in the c
nonical ensemble. Here, the system is able to sample
shorter paths and is starting to spend a significant amoun
time in these shorter path configurations; this can also
seen by the density of the curve~histogram! on the shorter
distance side. This may be the physical explanation for
suggested phase transformation, namely, it is associated
the system starting to sample the shortest paths. In Fig.~d!
this behavior is even more exaggerated, with the sys
spending most of the time in the shortest path, 72% of
time in the microcanonical ensemble and 59% of the time
the canonical ensemble. Note that at this low tempera
only a few of the shorter paths are visited a significant fr
tion of the time and the microcanonical ensemble still ha
narrower and more peaked probability distribution.

IV. CONCLUSIONS

We have presented Monte Carlo calculations for a co
binatorial optimization problem in the microcanonical e
semble and compared it to the canonical ensemble res

-
ific
re

-
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TABLE II. Microcanonical ensemble Monte Carlo values fo
the average temperature, total energy, average path length, and
cific heat. All the quantities are dimensionless. The average va
were determined by carrying out five calculations of 108 moves and
averaging the last four numbers obtained for each quantity.
energy is an input value and has no uncertainty in the calculat

^E2U&/N5T E ^U& c

0.01243 4.3234 4.0749 0.0702
0.02513 4.6141 4.1115 0.2098
0.05037 5.2910 4.2837 0.4818
0.07525 6.1005 4.5955 0.7385
0.10 6.9856 4.9833 0.8058
0.2483 12.225 7.2581 0.6021
0.4967 18.946 9.0115 0.1931
0.7472 24.597 9.6540 0.0845
0.9970 29.922 9.9676 0.04640
1.4984 40.241 10.2721 0.02000
2.000 50.398 10.4215 0.01102
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FIG. 3. ~a! The probability distributions for a temperature of 1.50.~b! The probability distributions for a temperature of 0.25.~c! The
probability distributions for a temperature of 0.100.~d! The probability distributions for a temperature of 0.0125.
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For a 20-city TSP we present the results of accurate value
the basic variables given in Tables I and II and shown
Figs. 2~a!–2~d!. These figures show that there are only sm
differences in the calculated thermodynamic quantities in
two ensembles. Thus, one conclusion we reach is that e
ensemble may be used with confidence in simulated ann
ing calculations. In our studies of this TSP, we have
noticed an advantage of one ensemble over the othe
reaching the ground state, but a systematic study would h
to be done using various system sizes and annealing sc
ules, that is, rules to lowerT in the canonical ensemble o
E in the microcanonical ensemble. We have carried out si
lar calculations on another 20-city TSP with results similar
those in this paper, although, of course, the specific va
will be different for a different city arrangement. We hav
also carried out similar calculations on larger TSPs and ag
we find a correspondence between the values in the two
sembles similar to those shown in Figs. 2~a!–2~d!. For larger
system sizes, the maximum in the specific heat shifts tow
lower temperatures and is more peaked.

Although the thermodynamic quantities in Figs. 2~a!–2~d!
are in close agreement, it is interesting that the probab
d
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distributions, shown in Figs. 3~a!–3~d!, which measure the
frequency of visiting a given configuration in the course
the calculation, are quite different in the two ensembles.
very high and very low temperatures, the distributions
nearly the same@compare Figs. 3~a! and 3~d!#, whereas at
intermediate temperatures, Figs. 3~b! and 3~c! show that the
microcanonical distribution is more sharply peaked, n
rower, and more symmetric about the maximum val
These distributions are reproducible from one run to the n
and show that there is a real difference in the frequency
visiting different configurations during calculations in th
two ensembles. Whether the microcanonical ensemble
proach to simulated annealing has advantages over the
nonical ensemble approach is an important question for
ture study. The results of this paper suggest that
microcanonical ensemble is at least as good as the cano
ensemble for simulated annealing applications.
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