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Simulated annealing in the microcanonical ensemble
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In earlier work we have extended the microcanonical Monte Carlo method, which had been introduced for
systems described by continuous potentiflsys. Rev. Ad4, 4061(1991)] to discrete lattice systeni&hys.
Rev. E53, 3402 (1996)], such as the Ising model. This microcanonical ensemble Monte Carlo method is
rigorously based on statistical mechanics and one has available the entire structure of equilibrium statistical
mechanics, such as the full set of fluctuation formulas, which are useful in numerical estimates of the equilib-
rium properties of the system. In the present paper we explore the use of the microcanonical ensemble Monte
Carlo probability distribution to study combinatorial optimization problems using simulated annealing. In
particular, we present the results of a detailed study of a particular 20-city traveling salesman problem in both
the canonical and microcanonical ensemh]84.063-651X%97)09105-9

PACS numbsgps): 05.20-y, 05.70-—-a, 02.50--r

[. INTRODUCTION procedure was termed “simulated annealing” by Kirk-
patrick, Gelatt, and Vecchi and is referred to by this name in
Since the introduction of the canonical-ensemble Montghe vast combinatorial optimization literature’]. This
Carlo method into statistical mechanics by Metropelisal. ~ method and numerous variations are routinely used in both
[1], most Monte Carlo simulations have used the canonicaMonte Carlo and molecular-dynamics simulations to study
ensemble. Earlier we have introduced a rigorous microcathe low-temperaturg-energy configurations of condensed
nonical Monte Carlo procedurg2] and applied it to con- Matter systems. .
densed matter systems with a continuous potential. More re- In the present paper, we present detailed Monte Carlo
cently, we have shown that this same microcanonicaf@lculational results in both the canonical and microcanoni-
ensemble(probability distribution in configuration space Cal ensembles for a 20-city traveling salesman problem
can also be used to describe discrete lattice sysf&Msn (TSP. The_ basic theory_ assoc!a'_[ed with the mlcrocan_omcal
related work, we have also developed other constant energg?Sémble is presented in detail in Rdf&| and[3] and will
ensembles and carried out Monte Carlo simulations in thesBOt be repeated. In Sec. Il we outline the canonical and mi-
ensembles; these include the isoenthalpic-isotension efffocanonical simulation methods. In Sec. Ill we present the
semble[4] and new ensembles that describe open Systemrgsults of canonl_cal and microcanonical ensemble calcula-
[5]. Since the microcanonical ensemble describes an isolatdtpns for the 20-city TSP. In Sec. IV we present our conclu-
system in equilibrium, this ensemble is at least as fundameriions, along with suggestions for further work.
tal as the canonical ensemble but has, we believe, been in-
appropriately neglected in simulation work. The canonical Il. TRAVELING SALESMAN PROBLEM
ensemble is more popular in analytic work, where the expo- AND ENSEMBLES
nential probability function is often simpler to use; in simu-
lations, there is no difference in difficulty between using the In the two-dimensional TSP, we are given a selldfities
canonical or microcanonical ensemble. at positions X; ,y;) and we are asked to determine the mini-
The use of statistical-mechanics methods to study combimal path length that starts and ends at any city and passes
natorial optimization problems originated with Kirkpatrick, through each of the other cities exactly one time; such a path
Gelatt, and Vecch[6], where they described a method of is called a tour and is a polygon witN vertices. In the
minimizing a function of many variables, the so-called costexample discussed in this paper, the positions of the cities
function, using the metropolis Monte Carlo method in theare chosen randomly inside the unit square. If we label the
canonical ensemble. They interpreted the cost function as theties with integers =1,2,... N, then each path length can
potential energy of a fictitious system and carried out mebe calculated if we give the ordered sequence of cities asso-
tropolis Monte Carlo calculations in the canonical ensembleciated with going around the path, starting from any city;
to generate a sequence of configurations of the system. Agach such tour is associated with a permutation of the inte-
with any physical system at a given temperature described bgers 1,2...,N. For N=3 cities, there are, in general,
the canonical ensemble, the fictitious system will come to{N—1)!/2 distinct sequences and, therefore, path lengths.
equilibrium, where its Helmholtz free energy is minimized. Since the number of distinct paths grows faster than any
As the temperature of the system is lowered and the systeower of N, the problem has no known direct solution
attains equilibrium at the lower temperature, the Helmholtzmethod that works for arbitrarid. Even for our small 20-
free energy has a lower value, and in the limit as the temeity problem, there are around6L0' distinct paths lengths.
perature goes toward zero, the system ends up, one hopes,Simulated annealing is one of the methods used as a practical
one of a group of states near the ground state of the systermethod to obtain approximate solutions to such problems.
where the potential energy is approximately equal to itsNumerous other methods used to study the TSP, which will
Helmholtz free energy and is near its global minimum. Thisnot be discussed in this paper, may be found in the extensive
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review paper on the TSBB], along with the extensive set of
references in this paper. The cost functidifx), which is
identified with the potential energy of the fictitious system, is
just the path length for the given sequence of cities visited.
We shall use units so that the energies and temperatures are0.8
all measured in the same dimensionless units. In the canoni-
cal ensemble, we have the configurational probability distri-
bution P+(x),

1.0

0.6

Pr(x)=Ce VT, (2.2)

whereC is a normalization constant, represents a specific 0.4
sequence of the cities visited and completely specifies the
system configuration, and is the temperature. The average

value ofU(x), along with the temperaturg, can be used to 0.2
define the total energy of the system as
E=NT+<U(X)> (22) OO | ] ! | ] ] L ] )
We are assuming two-dimensional Euclidean space; the 0.0 0.2 0.4 0.6 0.8 1.0
20 CITY, PATH = 4.0657

changes for arbitrary dimensiah are simple and given in
Ref.[3]. By the bracketg ), we mean an equilibrium average
over the configurations generated by the metropolis Mont
Carlo calculation, using the probability distribution equation
(2.1). Other quantities for the fictitious system can also be
calculated from the configurations generated in the Monte
Carlo calculation. The specific heat of the fictitious system
cr=(1/N)(5(U)/dT) can be obtained from the fluctuations ) ) ) .
in U, as given in Eq(6) of Ref.[3]. In order to omit repeated statements in the discussion of
In the microcanonical ensemble, we have the Configurathe data generated in our Calculations, we shall refer to the
tional probability distributionPg(x), temperature, energy, and potential energy of the fictitious
system without pointing out every time that these quantities
do not have a meaning in terms of a real system; we are
applying statistical mechanics ideas to a fictitious physical
where® (x) is the unit step function, which is 1 for>0 and  system.
zero otherwise, an@’ is another normalization constant; the ~ We constructed a 20-city TSP problem by randomly
function arises because the kinetic energy of the systershoosing 20x,y pairs in the unit square. In Fig. 1 we show
K=E—U is positive. It may seem unusual to think of the this city arrangement, as well as the minimum path length for
TSP as having a kinetic energy, but as explained in Bf.  this arrangement. In order to carry out the Monte Carlo pro-
for lattice systems such as the TSP or the Ising model, weedure, we need a method of making configurational changes
take the limit as the mass of the points of the discrete systerfmoves in the TSP, that is, trial configuration changes in the
goes to infinity and the velocity goes to zero, such that thenetropolis Monte Carlo procedure. We carry out two types
kinetic energy is finite. The necessary limit m— o, of trial moves with equal weighting(l) given the present
x—0, such thatymx—finite, and the system has finite ki- sequence of cities to be visiteq we select a subsequence of
netic energy, but will not have any spatial motion. Otherrandom length and reverse the order of this subsequence,
microcanonical ensemble averages can be calculated for thieus producing a new configuration of the syste&fm (2)
fictitious system using the configurations generated from thgiven the sequence of cities to be visitgd we select a

FIG. 1. The randomly selected 20-city problem discussed in this
%aper. The minimum length path is shown.

Ill. RESULTS

A. Computational strategy

Pe(x)=C"(E-U(x))N"1O(E—U(x)), (2.3

Monte Carlo calculation using E.3). The microcanonical
ensemble specific heatg=(1/N)(d(U)/JT), can be calcu-
lated by using the fluctuation formulas given in REZ].
Calculating the average of the cost functidx) in the mi-
crocanonical ensemble and using the specified valug, of
we can use Eq(2.2) to find the temperatur@& of the ficti-

subsequence of random length and transport this subse-
quence and insert it between two cities not on the subse-
quence. These changes are the same as those suggested by
Presset al. [9]. In the former, “reversal change,” two city-

city distances are replaced by two other city-city distances in
the calculation of the path length; these are the end points of

tious system corresponding to this energy. Thus, the inforthe reversed subsequence. In the latter, “transport change,”
mation from the two ensembles is complementary; in thehree city-city distances are replaced by three other city-city
canonical ensemble we specify a temperature and calculatedistances; these three city-city distances are associated with
corresponding average value of the energy, whereas in thtbe ends of the segment before its transport and the position
microcanonical ensemble we specify a value of the energyo where it is transported.

and calculate a corresponding average value of the tempera- We then carried out canonical ensemble Monte Carlo
ture. By feeding the calculated energy or temperature valuesimulations at each of eleven chosEmwalues. Since we are
back into the complementary ensemble, we obtain a consistsing a fictitious physical system, an arbitrary but satisfac-
tency (and codg check on our calculational results. tory method of defining a higkdimensionlesstemperature
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FIG. 2. (a) Total energy versus temperature for the two ensembles for the 11 values selected. In the canonical ensemble the energy is a
derived quantity, while in the microcanonical ensemble the temperature is a derived quantity. The solid line with boxes are the microca-
nonical ensemble values, while the dashed line and crosses are the canonical ensembléydlespecific heat versus temperature for
the two ensembles. The solid line with boxes are the microcanonical ensemble values, while the dashed line and crosses are the canonical
ensemble valuegc) The acceptance ratio versus temperature for the two ensembles. The solid line with boxes is the microcanonical
ensemble values, while the dashed line and crosses are the canonical ensembléd)albesaverage path length versus temperature for
the two ensembles. The solid line with boxes are the microcanonical ensemble values, while the dashed line and crosses are the canonical
ensemble values. The lines are just to guide the eye. The values used to make these graphs are shown in Tables | and II.

is to call the temperature high when approximately 90% ofl0® configuration run as the equilibration portion of the cal-
the moves are accepted; for our 20-city problem, this temeulation and do not use the values calculated in this run for
perature is around =2.00. After the high temperature was the final error estimate. We use the calculated values in the
determined, we selected ten lower temperatures and carrigsiher four runs to calculate a standard deviation for each
out five Monte Carlo calculations of %Oconfiguration  quantity of interest to use as an error estimate. For each of
change trial moves at each of the eleven temperatures §@e 11 canonical ensemble calculations, we arrive at a value
determine the thermodynamic properties of the fictitious sysys the energyE) using Eq.(2.2). For example, for the high
tem. Note that in the present study we do not investigate th?emperature T=2.00 mentioned above, we findE)
annealing schedulgemperature- or energy-lowering sched- =50.398; this value ofE) is then used in the microcanoni-

uIe)(.j Our a_tpproatch IS to tsr;tudg/ the ﬂCt't'OEIS' sys(t)em as ae:}%réal ensemble to calculate the temperafuvkich turns out to
modynamic system 1n the two ensembles. ur anneall e T=1.9988 and the other quantities of interest.

schedule is to lower the temperature to the next value an
carry out five runs of ®moves, and then lower the tem-
perature or energy to the next value and so on until all the
temperatures or energies are considered. The values of the In Fig. 2 we present various quantities versus temperature
average energies obtained in these eleven canonical eas calculated in the two ensembles. Because of the system’s
semble temperatures are then used in the microcanonicamall size we would expect small differences in the value of
probability distribution equatiofR.3) to carry out eleven mi- the various gquantities. Ensemble theory shows that ensemble
crocanonical ensemble runs at each of these energies. In th#ferences may be of the order of (Y for intensive vari-
microcanonical ensemble calculations we again carry ouables. All of the values comparing the two ensembles are
five 10*-move Monte Carlo runs at each energy. There is, obmaller than this value, often much smaller. The microca-
course, no significance to the fact that we carry out canonicatonical ensemble results are shown as solid lines with
ensemble runs to first determine the energies to be used Byuares while the canonical ensemble results are shown as
microcanonical ensemble calculations; we could just as weltlashed lines with crosses. Note the very close agreement in
reverse this procedure. As mentioned, in our Monte Carldrig. 2(a) between the energy-versus-temperature relation as
calculations we carried out five {Monte Carlo moves, and calculated in the two ensembles. The specific heats are not in
then lowered the temperature or energy to the next value anaks close agreement in Figik. For example, at the tempera-
carry out another five f0moves and so on, through all of the ture 0.075, the microcanonical ensemble specific heat is
temperatures and energies studied. We consider the firft7385(0.002, while the canonical ensemble specific heat is

B. Computational results
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TABLE I. Canonical ensemble Monte Carlo values for the tem-  TABLE Il. Microcanonical ensemble Monte Carlo values for
perature, average total energy, average path length, and the specifie average temperature, total energy, average path length, and spe-
heat. All the quantities are dimensionless. The average values weddfic heat. All the quantities are dimensionless. The average values
determined by carrying out five calculations ofifioves and av-  were determined by carrying out five calculations of titbves and
eraging the last four numbers obtained for each quantity. The temaveraging the last four numbers obtained for each quantity. The
perature is an input value and has no uncertainty in the calculatiorenergy is an input value and has no uncertainty in the calculation.

T (E) (U) c (E-U)IN=T E (U) c
0.0125 4.3258 4.0758 0.08318 0.01243 4.3234 4.0749 0.0702
0.025 4.6114 4.1139 0.21622 0.02513 4.6141 4.1115 0.2098
0.05 5.2901 4.2901 0.49409 0.05037 5.2910 4.2837 0.4818
0.075 6.1012 4.6012 0.72135 0.07525 6.1005 4.5955 0.7385
0.10 6.9860 4.9860 0.80244 0.10 6.9856 4.9833 0.8058
0.25 12.224 7.2249 0.57876 0.2483 12.225 7.2581 0.6021
0.50 18.9462 8.9462 0.19305 0.4967 18.946 9.0115 0.1931
0.75 24,5972 9.5972 0.08709 0.7472 24,597 9.6540 0.0845
1.00 29.9214 9.9214 0.04842 0.9970 29.922 9.9676 0.04640
1.50 40.2410 10.2410 0.02102 1.4984 40.241 10.2721 0.02000
2.00 50.3979 10.3979 0.01163 2.000 50.398 10.4215 0.01102

0.7214(0.001, where we show the standard deviation inf U t the ai i t for this cit
parentheses after the specific heat values. Note that the maxp’ (x) a F (i;:|yen empgra ure hor enhergy orb It?'I'CI y
mum in the specific heat is associated with an inflectiorf'f@hgement. In Figs.(8-3(d) we show these probability

point in the energy-versus-temperature relation. This is sugdistributions at temperatures 1.50, 0.25, 0.100, and 0.0125,
gestive of a higher-order phase transformation in the systenfieSPectively, for the two ensembles. Note the differences in
We shall return later to a discussion of this suggested phasiales on the four figures. These histograms are calculated
transformation. In F|g @) we show the acceptance ratio, during the last of the five fomove calculations. Thus, the
defined as the ratio of the number of accepted moves to tharea under each of these curves i$;11® obtain the prob-
total number of moves, for calculations in the two en-ability distribution, we would divide by this normalization
sembles. Finally, in Fig. @) we show the average path factor. At the highest temperature/energy, 1.50, the two
length as calculated in the two ensembles. The fact that thigrobability distributions are similar, and it is difficult to tell
relation is very nearly the same for the two ensembles sughe difference between them in FigiaB while in Fig. 3b)
gests that either ensemble can be used in simulated annealifigy the temperature 0.25, the two distributions have become
algorithms to find the lowest value of the cost function for quite different, with the microcanonical ensemble distribu-
the system. tion being sharper, while the canonical ensemble distribution
is broader and shows noticeably more asymmetry about its
C. Numerical values and errors maximum value. This tendency is even more pronounced in
In Table | we give the canonical ensemble valuesTof Fig. 3(c) for the temperature 0.100. Note that this value is
(E), (U), andc at the temperatures studied, while in Table N€ar the maximum in the spe_cmc heat and,_ hence, near the
Il we give the microcanonical ensemble values at the enerSuggested phase transformation. Note the irregular features
gies studied. These are the values used to construct Figé the probability distribution at small distances in the ca-
2(a)—2(d). The error estimates, except at the lowest temperalonical ensemble. Here, the system is able to sample the
ture, are small. For example, in the canonical ensemble rurhorter paths and is starting to spend a significant amount of
at T=0.075, the errors in the average energy, average patiime in these shorter path configurations; this can also be
and specific heat are 0.0013%, 0.0017%, and 0.16%, respe®€en by the density of the curykistogram on the shorter
tively. We expect a larger error in the specific heat, since it iglistance side. This may be the physical explanation for the
related to the derivative of the energy. It is well known thatsuggested phase transformation, namely, it is associated with
in Monte Carlo and molecular-dynamics simulations suchihe system starting to sample the shortest paths. In Fdfy. 3
derivative quantities converge more slowly and have largethis behavior is even more exaggerated, with the system
uncertainties. The errors in the microcanonical ensemble argPending most of the time in the shortest path, 72% of the
similar to the canonical ensemble errors. For example, at aime in the microcanonical ensemble and 59% of the time in
energy ofE =6.1005, which corresponds to a temperature ofthe canonical ensemble. Note that at this low temperature
0.07525, the errors in the average energy, average paﬂﬂ'y a few of the shorter paths are visited a Significant frac-

length, and specific heat are 0.003%, 0.0009%, and 0.27940n of the time and the microcanonical ensemble still has a
respectively. narrower and more peaked probability distribution.

D. Probability distribution of path lengths IV. CONCLUSIONS

in the two ensembles We have presented Monte Carlo calculations for a com-

During each simulation we constructed a histogram ofbinatorial optimization problem in the microcanonical en-
path lengths. This histogram is the probability distributionsemble and compared it to the canonical ensemble results.
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FIG. 3. (a) The probability distributions for a temperature of 1.860). The probability distributions for a temperature of 0.28. The
probability distributions for a temperature of 0.1@6) The probability distributions for a temperature of 0.0125.

For a 20-city TSP we present the results of accurate values dfistributions, shown in Figs.(8-3(d), which measure the

the basic variables given in Tables | and Il and shown infrequency of visiting a given configuration in the course of
Figs. 2a)—2(d). These figures show that there are only smallthe calculation, are quite different in the two ensembles. At
differences in the calculated thermodynamic quantities in therery high and very low temperatures, the distributions are
two ensembles. Thus, one conclusion we reach is that eith@rearly the samg¢compare Figs. @) and 3d)], whereas at
ensemble may be used with confidence in simulated anneahtermediate temperatures, FiggbBand 3c) show that the

ing calculations. In our studies of this TSP, we have notmicrocanonical distribution is more sharply peaked, nar-
noticed an advantage of one ensemble over the other irower, and more symmetric about the maximum value.
reaching the ground state, but a systematic study would havEhese distributions are reproducible from one run to the next
to be done using various system sizes and annealing scheahrd show that there is a real difference in the frequency of
ules, that is, rules to loweF in the canonical ensemble or visiting different configurations during calculations in the

E in the microcanonical ensemble. We have carried out simitwo ensembles. Whether the microcanonical ensemble ap-
lar calculations on another 20-city TSP with results similar toproach to simulated annealing has advantages over the ca-
those in this paper, although, of course, the specific valuesonical ensemble approach is an important question for fu-
will be different for a different city arrangement. We have ture study. The results of this paper suggest that the
also carried out similar calculations on larger TSPs and agaimicrocanonical ensemble is at least as good as the canonical
we find a correspondence between the values in the two emnsemble for simulated annealing applications.

sembles similar to those shown in Fig$a)2-2(d). For larger

system sizes, the maximum in the specific heat shifts toward ACKNOWLEDGMENTS
lower temperatures and is more peaked.
Although the thermodynamic quantities in Fig$a)2-2(d) The authors thank Murray Daw and Malcolm Skove for

are in close agreement, it is interesting that the probabilityhelpful discussions.
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